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ABSTRACT

A method to realize ultra-low temperature co-fireable ceramic composites with ultra-low permittivity is presented in this work. Hollow glass
microspheres with a size of 10–100lm were used as a filler in a tape based on lithium molybdate (Li2MoO4) ceramic to introduce controlled
porosity and reduce the relative permittivity of the sintered product. A lamination pressure of only 1.25MPa was sufficient to produce sam-
ples with uniform structure and without delamination. Differential scanning calorimetry and thermogravimetric analysis were used to opti-
mize the sintering temperature profile of the material. The microstructure of the samples was investigated with field emission scanning
electron microscopy, and the dielectric properties with a split post dielectric resonator. Compatibility of the composite ceramic with silver
was tested by applying thick-film-printed electrodes and post-firing them on the surface. Samples sintered at 540 �C exhibited a relative per-
mittivity of 1.4–5.40 and a loss tangent of 10�3–10�4 at 5 and 10GHz. The method shows interesting possibilities to significantly reduce
processing temperatures compared to conventional low-temperature co-fired ceramics materials and to obtain the extremely low permittivity
that is especially required for future high-frequency applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0048566

The high frequencies used in modern telecommunications such
as 5G and beyond will be sensitive to losses in signal pathway due to
the absorption by surrounding materials. Furthermore, very low per-
mittivity is also required to enable fast signal propagation and to pro-
vide a counter effect for the shrinking size of the components due to
the increased frequencies. A common solution to decrease permittivity
is to introduce porosity into the materials, which can be done for
organic1 as well as for inorganic2 substrates.

Porosity has been added to organic materials, for example, by
utilizing foaming agents,3 the partial decomposition of material,4 or by
utilizing hollow glass microspheres.5–7 Hollow glass microspheres
(HGMS) offer an inexpensive solution to increase porosity, thereby
reducing dielectric permittivity and losses, while better maintaining
mechanical rigidity compared to purely gas-filled composites.
However, although organic materials offer excellent electrical proper-
ties for substrates, their thermal stability can become an issue as power
densities of future devices increase.

Ceramic composite materials, on the other hand, offer good ther-
mal stability at higher temperatures. The downside of using ceramic
materials has been their high manufacturing temperature, resulting in
high energy consumption and increased production costs. Ceramic
materials or their glass composites have been developed to be utilized
as low-temperature co-fired ceramics (LTCC) sintered typically at

800–1000 �C.8,9 For HGMS, these temperatures are still too high
(melting temperatures at 700–850 �C), and therefore polymer micro-
spheres or etching has been previously utilized to generate porosity in
the ceramic.10–13 A low relative permittivity of 3.8 for LTCC has been
obtained by Xi et al.14 To further decrease the fabrication temperatures
of the ceramics, ultra-low temperature co-fired ceramics (ULTCC)
have been developed,15–18 which also enable the use of HGMS as pre-
sented in this paper.

With the recent invention of a room temperature fabrication
method (RTF), a water-based suspension of lithium molybdenum
oxide (LMO) has been used to produce bulk dielectric samples and
composites.19–21 In previous research],2 extremely low er ceramic-
based composite materials were produced at room temperature utiliz-
ing water suspension of LMO, HGMS, and quartz fibers. This research
showed very good wetting of HGMS with the LMO solution. LMO
has been earlier reported22 to have a relatively low sintering tempera-
ture of 540 �C with bulk density, relative permittivity, and Qxf of
2.895 g/cm3 (95.5%), 5.5, and 46 000GHz (13.051GHz), respectively.
In addition, despite the fact that Mo being the transition metal, no
extra phases are likely to form as a result of changes in oxidation levels
of Mo in such low temperature and ambient sintering atmosphere,
which would affect the dielectric properties.22–24 This indicates that
the combination of LMO and HGMS would also offer an opportunity
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to fabricate multilayer structures through ULTCC and tape casting
technologies with extremely low er and losses for high-frequency appli-
cations. In this work, a slurry system for the LMO-HGMS composite
for tape casting was further developed from earlier work,25 and the
lamination and sintering of several layers was optimized. The high-
frequency properties of the composites as a function of HGMS content
were studied as well as the achieved microstructures and densities.

The Li2MoO4 (LMO) (>99%; Alfa Aesar, USA) powder was
milled in ethanol according to the procedure reported earlier by
V€a€at€aj€a et al.21 with ZrO2 milling media in a planetary ball mill
(Pulverisette 6, Fritsch, Idar-Oberstein, Germany) to reduce the parti-
cle size and to achieve a suitable size distribution. The dried powder
was sieved through a mesh size of 45lm. The HGMSs (Kevra Oy,
Finland) were a C-type glass with 50%–75% of SiO2, average sphere
size of 40–80lm, volumetric density of 0.1–0.15 g/cm3, bulk density
of 0.2 g/cm3, and temperature resistance of up to 650 �C according to
the datasheet from the manufacturer. According to the SEM-EDS
analysis carried out in the earlier work,2 the composition of the
HGMS was 72wt. % of SiO2, 14wt. % of Na2O, and 14wt. % of CaO.
The solvent used in the tape casting slurry was dimethyl carbonate
(DMC) (>99%, Sigma-Aldrich, USA), the binder was
QPACVR 40–PPC—poly(propylene carbonate) (Empower Materials,
Inc, USA), and the plasticizers were Santicizer S160 butyl benzyl
phthalate and UCON50HB2000 polyalkylene glycol (Tape Casting
Warehouse, Inc, USA).

Tape casting slurries with a designed HGMS content of 0–85 vol.
% in the resulting sintered tapes were made. The organic components
were first dissolved in DMC, and after the addition of LMO, the solu-
tion was milled with zirconium oxide balls for 24 h at a slow speed to
thoroughly mix the components and deagglomerate the LMO par-
ticles. After milling, the HGMS powder was mixed in with the solu-
tion, followed by slow agitation without the milling media to remove
the air bubbles from the slurry. The slurries were tape-cast through a
800lm slit on mylar film and dried under a lid at room temperature
to achieve green tapes with a thickness of 200lm. The compositions
of different slurries are shown in Table I.

Decomposition of organic additives and optimization of the sin-
tering profile were studied using DSC-TGA (Netzsch STA 449 F3
Jupiter, NETZSCH-Ger€atebau GmbH, Germany). The measurements
were carried out in a constant gas flow of 20ml/min in synthetic air
and nitrogen (protective purge) with various temperature profiles. The
temperature profile tested with DSC-TGA consisted of five segments:
heating to 180 �C (3.6 �C/min), heating to 350 �C (0.7 �C/min), heat-
ing to 540 �C (3.2 �C/min), hold at 540 �C (30min), and cooling to
30 �C (3 �C/min). The sample size in the DCS-TGAmeasurement var-
ied between 8 and 18mg.

The green tapes were cut into 40 � 40mm2 squares, and 5–6
layers were stacked and laminated in a uniaxial press with heated
plates between silicone sheets to distribute the pressure evenly. The
used lamination pressure was 1.25MPa, temperature 80 �C, and press-
ing time 15min. The green density of the laminates was determined
through their weight and dimensions. The final sintering profile was
as follows: 40min heating from RT to 140 �C, 10min hold, 5 h heating
to 260 �C, 15min hold, followed by 1 h heating to 540 �C, 2 h hold.
Sintering was finished with 8 h cooling to RT. A long burn out time
was used to prevent the formation of gas bubbles in the laminates. A
6.0 g alumina sheet was placed on top of each laminate during the sin-
tering to prevent warping. Weights and dimensions were re-measured
after sintering.

Dielectric measurements were carried out with a vector network
analyzer (VNA) (Rhodes & Schwarz ZVB20, Germany) connected
with a SPDR (QWED, Poland) with nominal resonances at 5.180 and
9.975GHz. The relative permittivity and dielectric losses were calcu-
lated from measurements using the QWED software. After the mea-
surements, conductive silver lines were stencil printed on top of the
samples using ESL 599-E (Electro-Science Laboratories, Inc, USA) low
temperature silver paste, which was fired at 450 �C following the man-
ufacturer’s instructions. Finally, the cross sections of the sintered sam-
ples were investigated with field emission scanning electron
microscopy (FESEM, Carl Zeiss Ultra Plus, Germany). The samples
for FESEM analysis were laser-cut and finished with ion polishing
(Jeol IB-19520CCP, Jeol Ltd., Japan).

The decomposition of the organic additives in the DSC measure-
ment is shown in Fig. 1. The onset of the first exothermic peak in the
DSC data started around 150 �C, and between 150 and 180 �C, the
organics started to burn out from the green tape, which was also
detected as a small decline in the TG curve due to mass loss. The larg-
est mass loss and sharp exothermic peaks were seen around
190–200 �C. The heating was considerably slowed in this region to
prevent the formation of gas bubbles in the final product. After about
250 �C, the organic additives had decomposed and no further mass
loss or reactions were detected. These results are well in line with mea-
surements reported earlier.25

According to the FESEM analysis, no delamination of the layers
was observed and the silver ink was attaching sufficiently well to the
sample surfaces up to 50 vol. % HGMS content. With higher HGMS
content, the mechanical integrity of the sintered samples started to
decline. The cross sections are presented in Fig. 2.

The measured dielectric properties, the shrinkages, and densities
of the tapes are presented in Table II. It can be seen that with increas-
ing HGMS content, the relative permittivity greatly and continuously
decreased at both frequencies, while the loss tangent values had the

TABLE I. Composition of the tape casting slurries.

Vol. % of HGMS in sintered tape HGMS (g) LMO (g) QPAC 40 (g) Santicizer S160 (g) Polyalkylene glycol (g) DMC (g)

0 % HGMS 0 28 3.6 0.9 0.9 28
25 % HGMS 0.5 21 3.1 0.75 0.75 28
50 % HGMS 1.0 14 3.3 0.8 0.8 28
75 % HGMS 1.5 7.0 3.5 0.9 0.9 28
85 % HGMS 1.7 4.2 3.6 0.9 0.9 28
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opposite behavior. Supposedly, the level of losses could be hindered by
the selection of a different type of HGMS. The shrinkage of the sam-
ples also reduced when the HGMS content was increased as a conse-
quence of the reduced amount of LMO that sinters. The samples were
easy to handle until 75 and 85 vol. % HGMS content, which were
rather brittle samples and needed extra care in handling.

The conclusion of the materials’ properties is shown in Table III
along with some other low permittivity materials. The permittivity of
the 50 vol. % was less than half that of the sintered LMO (5.4). When
comparing dielectric properties with other low permittivity microwave
materials in the table, the developed composites with 50 vol. %. or
more HGMS had the lowest permittivities and still lower loss tangents
than all other composites. Polymer—ceramicA6M

10 being the only one
with a comparable loss tangent, but with a permittivity 44% higher.
Also, the sintering temperature remained the lowest of these materials
if the polymer composites and RTF are not considered. This shows the
high potential of the developed composite for ULTCC application spe-
cific optimization, by tuning the filler content (e.g., 50–85 vol. %)
according to the wanted high frequency, (low) permittivity, and the
tolerable losses.

FIG. 1. DSC-TGA measurement of a green tape containing 50 vol. % of HGMS.
The two heating segments with weight loss occurring are presented. The organic
materials decomposed at 150–225 �C.

FIG. 2. Backscattering images of cross sections of sintered samples. Silver layer can be seen as a brighter layer on the left side of each sample, indicated with an arrow. (a)
Pure LMO, (b) 25 vol. % HGMS, (c) 50 vol. % HGMS, (d) 75 vol. % HGMS, and (e) 85 vol. % HGMS. (f) Printed silver ink interface with sample containing 50 vol. % HGMS. (g)
Magnification of 25 vol. % HGMS sample with three 200lm thick layers in the image area. Vertical lines indicate the location of estimated layer surfaces, as they were not visi-
ble in FESEM inspection. Scale bars on figures (a)–(f) 100 lm and (g) 200lm.
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A simple method to produce low permittivity and low dielec-
tric loss LMO-based ceramic suitable for ULTCC and sinterable at
540 �C was developed. DSC-TG analysis was utilized to optimize
the sintering profile for the tape material especially in the case of
high HGMS content (50 vol. % or more). Careful development of
manufacturing parameters resulted in green tapes with easy han-
dling and lamination characteristics, with an exceptionally low
lamination pressure of 1.25MPa. The low lamination pressure
may enable the embedding of delicate discrete components inside
the laminated structures, which opens up new possibilities for
future research. The used silver paste seemed to be suitable for use
with the developed LMO-based composition, thus the developed
material may be used in ULTCC as expected. The HGMS filler
reduced the density of the ULTCC to 13% (85 vol. % HGMS) of the
pure ULTCC LMO (0 vol. % HGMS), and it also greatly affected
the dielectric properties. The lowest achieved relative permittivity

was 1.4 and 1.5 at 5.2 and 10GHz, respectively, for the sample con-
taining 85 vol. % HGMS. The lowest loss tangent values achieved
were 1.7 and 1.9 � 10�4 at 5.2 and 10GHz, respectively, for the
sample containing 0 vol. % HGMS (or sintered LMO) and
increased to 1.4 and 1.7 � 10�3, respectively, with the 85 vol. %.
HGMS. The developed material system showed one of the lowest
permittivities and losses among a large variety of microwave
ceramic and composite materials reported. The dielectric permit-
tivity and losses of the developed materials could be easily adjusted
by using different quantities of HGMS.

M.N. produced and measured all samples and obtained the used
materials. T.V. formulated the tape casting slurries and produced the
green tapes used in this work. T.S. carried out the DSC-TG analysis of
the green tape. H.J. and J.J. formulated the hypotheses and discussed
the dielectric results of the study. All authors contributed to the writing
of the manuscript and evaluation of the results.

TABLE II. Properties of tapes.

Tape contents

5.2 GHz 10 GHz
Density Density

Shrinkage

er tan d, E-3 er tan d, E-3 g/cm3 % of LMO XY, % Z, %

0 % HGMS 5.4 0.17 5.4 0.19 2.84 93 % 21 % 21 %
25 % HGMS 3.5 0.60 3.5 0.65 1.77 58 % 13 % 14 %
50 % HGMS 2.6 1.1 2.6 1.3 1.32 43 % 8 % 8 %
75 % HGMS 1.7 1.2 1.7 1.3 0.62 20 % 4 % 3 %
85 % HGMS 1.4 1.4 1.5 1.7 0.39 13 % 4 % �4 %

TABLE III. Microwave properties of low permittivity materials.

Material type Filler
Load
(%)

Fabr.
Temp. (�C)

Meas.
freq. (GHz) er

Loss tan,
E-3 Qxf, E9

Density
(g/cm3) Ref.

ceramic Li2MoO4 100 540 5.2–10 5.4 0.17–0.19 � � � 2.84 (93%) this study
glass—ceramic HGMS 85–25 vol. 540 5.2–10 1.4–3.5 1.7–0.6 � � � 0.39–1.77

(13–58%)
this study

Glass - polymer glass balls 46.7–18.5 vol. 140 0.01 2.59–3.0 1.29–1.64 � � � 0.930– 1.1
(73–90%)

7

Commercial LTCC � � � � � � � � � 10 4.2–19 6–6.6 360–10 000 � � � 8
Commercial LTCC � � � � � � � � � 10 4.7–19 1–6 1667–10 000 � � � 8
Polymer—ceramicA6M PMMA

spheres
30wt. 500 5–10 3.75 0.85–1.25 � � � 1.55 (67%) 10

Polymer—ceramic951 PMMA
spheres

30wt. 500 5–10 6.5–6.5 5.8–6.7 � � � 2.91 (98%) 10

Glass-Al2O3 graphite 50wt. 1250 0.002 2.8 � � � � � � � � � 11
Glass-cordierite Graphite 25wt 1250 0.002 3.7 � � � � � � � � � 11
Ceramic—glass Al2O3 10–15wt 640 16.64 3.9–3.5 � � � 38 000–12 500 2.87–2.75 14
Ceramic Li2MoO4 100 25–120 9.60 4.6–5.2 � � � 10 200–18 500 2.6–2.8

(87–93%)
19

Glass—ceramic,
LTCC

Silica 15wt 650 0.001 6.4 1.00 � � � 3.6 26

ceramic K2Mo3O10 100 520 � � � 5.6 � � � 35 830 � � � 27
Glass—ceramic Glass 50 vol. 750–950 12.4–12.6 6.6–5.8 � � � 2632 2.8–3.0 28
ceramic Na2O-MoO3 100 660 13.39 4.1 � � � 35 000 2.98 (92%) 29
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